Projected filter trust region methods for a semismooth least squares formulation of mixed complementarity problems

نویسندگان

  • Christian Kanzow
  • Stefania Petra
چکیده

A reformulation of the mixed complementarity problem as a box constrained overdetermined system of semismooth equations or, equivalently, a box constrained nonlinear least squares problem with zero residual is presented. Based on this reformulation, a trust region method for the solution of mixed complementarity problems is considered. This trust region method contains elements from different areas: A projected Levenberg-Marquardt step in order to guarantee local fast convergence under suitable assumptions, affine scaling matrices which are used to improve the global convergence properties, and a multidimensional filter technique to accept a full step more frequently. Global convergence results as well as local superlinear/quadratic convergence is shown under appropriate assumptions. Moreover, numerical results for the MCPLIB indicate that the overall method is quite robust.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a semismooth least squares formulation of complementarity problems with gap reduction

We present a nonsmooth least squares reformulation of the complementarity problem and investigate its convergence properties. The global and local fast convergence results (under mild assumptions) are similar to some existing equation-based methods. In fact, our least squares formulation is obtained by modifying one of these equationbased methods (using the Fischer-Burmeister function) in such ...

متن کامل

A feasible semismooth asymptotically Newton method for mixed complementarity problems

Semismooth Newton methods constitute a major research area for solving mixed complementarity problems (MCPs). Early research on semismooth Newton methods is mainly on infeasible methods. However, some MCPs are not well defined outside the feasible region or the equivalent unconstrained reformulations of other MCPs contain local minimizers outside the feasible region. As both these problems coul...

متن کامل

Global and Local Superlinear Convergence Analysis of Newton - TypeMethods for Semismooth Equations with Smooth Least

The local superlinear convergence of the generalized Newton method for solving systems of nonsmooth equations has been proved by Qi and Sun under the semismooth condition and nonsingularity of the generalized Jacobian at the solution. Unlike the Newton method for systems of smooth equations, globalization of the generalized Newton method seems dif-cult to achieve in general. However, we show th...

متن کامل

Solving Generalized Semi-Infinite Programming Problems with a Trust Region Method

In this paper, a trust region method for generalized semi-infinite programming problems is presented. The method is based on [O. Yi-gui, “A filter trust region method for solving semi-infinite programming problems”, J. Appl. Math. Comput. 29, 311 (2009)]. We transformed the method from standard to generalized semi-infinite programming problems. The semismooth reformulation of the Karush–Kuhn–Tu...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2007